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Temporal Probability Models
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Markov Models
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Reasoning over Time or Space

• Often, we want to reason about a sequence of observations
• Speech recognition

• Robot localization

• User attention

• Medical monitoring

• Need to introduce time (or space) into our models
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Markov Models

• Value of X at a given time is called the state

• Parameters: called transition probabilities or dynamics, specify how the state evolves 
over time (also, initial state probabilities)
• Stationarity assumption: transition probabilities the same at all times

X2X1 X3 X4
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Joint Distribution of a Markov Model

• Joint distribution:

• More generally:

• Questions to be resolved:
• Does this indeed define a joint distribution?
• Can every joint distribution be factored this way, or are we making some assumptions about 

the joint distribution by using this factorization?

X2X1 X3 X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

P (X1, X2, . . . , XT ) = P (X1)P (X2|X1)P (X3|X2) . . . P (XT |XT�1)

= P (X1)
TY

t=2

P (Xt|Xt�1)
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Chain Rule and Markov Models

• From the chain rule, every joint distribution over can be written as:

• Assuming that and

Results in the expression posited on the previous slide:

X2X1 X3 X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X2)P (X4|X3)

X1, X2, X3, X4

P (X1, X2, X3, X4) = P (X1)P (X2|X1)P (X3|X1, X2)P (X4|X1, X2, X3)

X4 ?? X1, X2 | X3X3 ?? X1 | X2
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Chain Rule and Markov Models

• From the chain rule, every joint distribution over                                  can be written as:

• Assuming that for all t:

Gives us the expression posited on the earlier slide:

X2X1 X3 X4

Xt ?? X1, . . . , Xt�2 | Xt�1

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|Xt�1)

P (X1, X2, . . . , XT ) = P (X1)
TY

t=2

P (Xt|X1, X2, . . . , Xt�1)

X1, X2, . . . , XT
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Example Markov Chain: Weather

• States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

§ Initial distribution: 1.0 sun

§ CPT P(Xt | Xt-1):
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Example Markov Chain: Weather

• Initial distribution: 1.0 sun

• What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1
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Mini-Forward Algorithm

• Question: what’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (xt�1, xt)

=
X

xt�1

P (xt | xt�1)P (xt�1)
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Example Run of Mini-Forward Algorithm

§ From initial observation of sun

§ From initial observation of rain

§ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)
…
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§ Stationary distribution:
§ The distribution we end up with is called 

the stationary distribution of the 
chain

§ It satisfies

Stationary Distributions

• For most chains:
• Influence of the initial distribution gets 

less and less over time.
• The distribution we end up in is 

independent of the initial distribution

P1(X) = P1+1(X) =
X

x

P (X|x)P1(x)

P1
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Example: Stationary Distributions

• Question: what’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

P1(sun) = P (sun|sun)P1(sun) + P (sun|rain)P1(rain)

P1(rain) = P (rain|sun)P1(sun) + P (rain|rain)P1(rain)

P1(sun) = 0.9P1(sun) + 0.3P1(rain)

P1(rain) = 0.1P1(sun) + 0.7P1(rain)

P1(sun) = 3P1(rain)

P1(rain) = 1/3P1(sun)

P1(sun) + P1(rain) = 1

P1(sun) = 3/4

P1(rain) = 1/4Also:
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Application of Stationary Distribution: Web Link Analysis

• PageRank over a web graph
• Each web page is a state

• Initial distribution: uniform over pages

• Transitions:

• With prob. c, uniform jump to a
random page (dotted lines, not all shown)

• With prob. 1-c, follow a random
outlink (solid lines)

• Stationary distribution
• Will spend more time on highly reachable pages
• e.g. Many ways to get to the acrobat reader download page
• Somewhat robust to link spam
• Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors (rank actually getting less 
important over time)
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Application of Stationary Distributions: Gibbs Sampling

• Each joint instantiation over all hidden and query 
variables is a state: {X1, …, Xn} = H U Q

• Transitions:
• Resample variable xj according to 

p(Xj | X1, X2, …, Xj-1, Xj+1, …, Xn, E1, …, Em)

• Stationary distribution:
• Conditional distribution P(X1, X2 , … , Xn|E1, …, Em)

• Means that when running Gibbs sampling long enough we get 
a sample from the desired distribution

• Requires some proof to show this is true!
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Hidden Markov Models
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Hidden Markov Models

• Markov chains not so useful for most agents
• Need observations to update your beliefs

• Hidden Markov models (HMMs)
• Underlying Markov chain over states X
• You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

• An HMM is defined by:
• Initial distribution:
• Transitions:
• Emissions:

P (Xt | Xt�1)
P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)
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Joint Distribution of an HMM

• Joint distribution:

• More generally:

• Questions to be resolved:
• Does this indeed define a joint distribution?
• Can every joint distribution be factored this way, or are we making some assumptions about the 

joint distribution by using this factorization?

X5X2

E1

X1 X3

E2 E3 E5

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

P (X1, E1, . . . , XT , ET ) = P (X1)P (E1|X1)
TY

t=2

P (Xt|Xt�1)P (Et|Xt)
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• From the chain rule, every joint distribution over                                           can be written as:

• Assuming that

Gives us the expression posited on the previous slide:

X1, E1, X2, E2, X3, E3

P (X1, E1, X2, E2, X3, E3) =P (X1)P (E1|X1)P (X2|X1, E1)P (E2|X1, E1, X2)

P (X3|X1, E1, X2, E2)P (E3|X1, E1, X2, E2, X3)

P (X1, E1, X2, E2, X3, E3) = P (X1)P (E1|X1)P (X2|X1)P (E2|X2)P (X3|X2)P (E3|X3)

X2

E1

X1 X3

E2 E3

Chain Rule and HMMs

X2 ?? E1 | X1, E2 ?? X1, E1 | X2, X3 ?? X1, E1, E2 | X2, E3 ?? X1, E1, X2, E2 | X3
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Real HMM Examples

• Speech recognition HMMs:
• Observations are acoustic signals (continuous valued)
• States are specific positions in specific words (so, tens of thousands)

• Machine translation HMMs:
• Observations are words (tens of thousands)
• States are translation options

• Robot tracking:
• Observations are range readings (continuous)
• States are positions on a map (continuous)
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Filtering / Monitoring

• Filtering, or monitoring, is the task of tracking the distribution Bt(x) 
= P(Xt | E1, …, Et) (the belief state) over time

• We start with B0(x) in an initial setting, usually uniform

• As time passes, or we get observations, we update B(x)

• The Kalman filter was invented in the 60’s and first implemented 
as a method of trajectory estimation for the Apollo program
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Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, never more 

than 1 mistake
Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer
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Example: Robot Localization

t=1

Lighter grey: was possible to get the reading, but less likely b/c required 1 
mistake

10Prob
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Example: Robot Localization

t=2

10Prob
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Example: Robot Localization

t=3

10Prob
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Example: Robot Localization

t=4

10Prob
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Example: Robot Localization

t=5

10Prob
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Inference: Base Cases

E1

X1

X2X1
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Passage of Time

• Assume we have current belief P(X | evidence to date)

• then, after one time step passes:

• Basic idea: beliefs get “pushed” through the transitions
• With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it 

includes

X2X1

=
X

xt

P (Xt+1, xt|e1:t)

=
X

xt

P (Xt+1|xt, e1:t)P (xt|e1:t)

=
X

xt

P (Xt+1|xt)P (xt|e1:t)
§ Or compactly:

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

P (Xt+1|e1:t)
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Example: Passage of Time

• As time passes, uncertainty “accumulates”

t = 1 t = 2 t = 5

(Transition model: ghosts usually go clockwise)
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Observation

• Assume we have current belief P(X | previous evidence):

• Then, after evidence comes in:

• Or, compactly:

E1

X1

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

§ Basic idea: beliefs “reweighted” 
by likelihood of evidence

§ Unlike passage of time, we have 
to renormalize
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Example: Observation

• As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation
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Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117
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The Forward Algorithm

• We are given evidence at each time and want to know

• We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…
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Online Belief Updates

• Every time step, we start with current P(X | evidence)

• We update for time:

• We update for evidence:

• The forward algorithm does both at once (and doesn’t normalize)

X2X1

X2

E2
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Recap: Filtering

Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )

X2

E1

X1

E2

<0.5, 0.5>

Belief: <P(rain), P(sun)>

<0.82, 0.18>

<0.63, 0.37>

<0.88, 0.12>

Prior on X1

Observe

Elapse time

Observe
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Particle Filtering
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Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

§ Filtering: approximate solution

§ Sometimes |X| is too big to use exact inference
§ |X| may be too big to even store B(X)
§ E.g. X is continuous

§ Solution: approximate inference
§ Track samples of X, not all values
§ Samples are called particles
§ Time per step is linear in the number of samples
§ But: number needed may be large
§ In memory: list of particles, not states

§ This is how robot localization works in practice

§ Particle is just new name for sample
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Representation: Particles

• Our representation of P(X) is now a list of N particles (samples)
• Generally, N << |X|

• Storing map from X to counts would defeat the point

• P(x) approximated by number of particles with value x
• So, many x may have p(x) = 0! 

• More particles, more accuracy

• For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)
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Particle Filtering: Elapse Time

§ Each particle is moved by sampling its next 
position from the transition model

§ This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

§ Here, most samples move clockwise, but some move in 
another direction or stay in place

§ This captures the passage of time
§ If enough samples, close to exact values before and 

after (consistent)

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)
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§ Slightly trickier:

§ Don’t sample observation, fix it

§ Similar to likelihood weighting, downweight
samples based on the evidence

§ As before, the probabilities don’t sum to one, 
since all have been down weighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)
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Particle Filtering: Resample

• Rather than tracking weighted samples, we 
resample

• N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

• This is equivalent to renormalizing the distribution

• Now the update is complete for this time step, 
continue with the next one

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)
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Recap: Particle Filtering

• Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)
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Robot Localization

• In robot localization:
• We know the map, but not the robot’s position

• Observations may be vectors of range finder readings

• State space and readings are typically continuous (works 
basically like a very fine grid) and so we cannot store B(X)

• Particle filtering is a main technique
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Particle Filter Localization (Sonar)
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Particle Filter Localization (Laser)



52

Robot Mapping

• SLAM: simultaneous localization and mapping
• We do not know the map or our location

• State consists of position AND map!

• Main techniques: Kalman filtering (Gaussian HMMs) and 
particle methods

DP-SLAM, Ron Parr
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Particle Filter SLAM – Video 1
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Particle Filter SLAM – Video 2
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Dynamic Bayes Nets
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Dynamic Bayes Nets (DBNs)

• We want to track multiple variables over time, using multiple sources 
of evidence

• Idea: repeat a fixed Bayes net structure at each time

• Variables from time t can condition on those from t-1

• Dynamic Bayes nets are a generalization of HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3
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DBN Particle Filters

• A particle is a complete sample for a time step

• Initialize: generate prior samples for the t=1 Bayes net

• Example particle: g1
a = (3,3) g1

b = (5,3) 

• Elapse time: sample a successor for each particle 

• Example successor: g2
a = (2,3) g2

b = (6,3)

• Observe: weight each entire sample by the likelihood of the evidence conditioned on the 
sample

• Likelihood: p(e1
a |g1

a ) * p(e1
b |g1

b ) 

• Resample: select prior samples (tuples of values) in proportion to their likelihood
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Most Likely Explanation
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HMMs: MLE Queries

• HMMs defined by
• States X
• Observations E
• Initial distribution:
• Transitions:
• Emissions:

• New query: most likely explanation:

• New method: the Viterbi algorithm

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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State Trellis

• State trellis: graph of states and transitions over time

• Each arc represents some transition

• Each arc has weight

• Each path is a sequence of states

• The product of weights on a path is that sequence’s probability along with the evidence

• Forward algorithm computes sums of paths, Viterbi computes best paths

sun

rain

sun

rain

sun

rain

sun

rain
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Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)



62



63

Challenge

• Setting

• User we want to spy on use HTTPS to browse the internet

• Measurements

• IP address

• Sizes of packets coming in

• Goal

• Infer browsing sequence of that user

• e.g.: Medical, financial, legal, …
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HMM

• Transition model

• Probability distribution over links on the current page + some probability to navigate 
to any other page on the site

• Noisy observation model due to traffic variations

• Caching

• Dynamically generated content

• User-specific content, including cookies

à Probability distribution P( packet size | page )
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Results

BoG = described approach, others are prior work
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Results

0
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Session Length Effect
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