Artificial Intelligence

 CE-417, Group 1Computer Eng. Department Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D.
Courtesy: Most slides are adopted from CSE-5Z3 (Washington U.), original slides for the textbook, and CS- 188 (UC. Berkeley).

Temporal Probability Models

Markov Models

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- User attention
- Medical monitoring

- Need to introduce time (or space) into our models

Markov Models

- Parameters: called transition proyaleitition oi tdipmamics, specify how the state evolves over time (also, inifialostate probabilitiesprob.
- Stationarity assumption: transition probabilities the same at all times

Joint Distribution of a Markov Model

- Joint distribution:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)
$$

- More generally:

$$
\begin{aligned}
P\left(X_{1}, X_{2}, \ldots, X_{T}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right) \\
& =P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
\end{aligned}
$$

- Does this indeed define a joint distribution?
- Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and Markov Models

- From the chain rule, every joint distribution over $X_{1}, X_{2}, X_{3}, X_{4}$ can be written as:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) P\left(X_{4} \mid X_{1}, X_{2}, X_{3}\right)
$$

- Assuming that $X_{3} \Perp X_{1} \mid X_{2}$ and $X_{4} \Perp X_{1}, X_{2} \mid X_{3}$

Results in the expression posited on the previous slide:

$$
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)
$$

Chain Rule and Markov Models

- From the chain rule, every ioint distribution over $X_{1}, X_{2}, \ldots, X_{T}$ can be written as:

$$
P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{1}, X_{2}, \ldots, X_{t-1}\right)
$$

- Assuming that for all t:

$$
X_{t} \Perp X_{1}, \ldots, X_{t-2} \mid X_{t-1}
$$

Gives us the expression posited on the earlier slide:

$$
P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
$$

Example Markov Chain: Weather

- States: $X=\{$ rain, sun $\}$

$\longrightarrow C P T P\left(X_{t} \mid X_{t-1}\right):$
Two new ways of representing the same CPT

Example Markov Chain: Weather

- Initial distribution: 1.0 sun

$$
\begin{aligned}
& \text { - What is the probability distribution after one step? } \\
& \xrightarrow[P]{P\left(X_{2}=\text { sun }\right)=\quad} \begin{array}{l}
P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { sun }\right) P\left(X_{1}=\text { sun }\right)+\mathbb{3} \\
\\
P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { rain }\right) P\left(X_{1}=\text { rain }\right)
\end{array} \quad \mathbb{P}\left(X_{2}=s \mid X_{1}=x\right) \\
& 0.9 \cdot 1.0+0.3 \cdot 0.0=0.9 \\
& \mathbb{P}\left(X_{1}=x\right)
\end{aligned}
$$

Mini-Forward Algorithm

- Question: what's $P(X)$ on some day t?

$$
\begin{aligned}
P\left(x_{1}\right) & =\text { known } \\
P\left(x_{t}\right) & =\sum_{x_{t-1}}^{\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}\right)} \\
& =\underbrace{}_{\text {Forward simulation }}
\end{aligned}
$$

Example Run of Mini-Forward Algorithm

- From initial observation of sun

- From initial observation of rain

- From vet another initial distribution $P\left(X_{1}\right)$:

Stationary Distributions

- For most chains:
- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution
- Stationary distribution:
- The distribution we end up with is called the stationary distribution P_{∞} of the chain
- It satisfies $P_{t+1}(x)=\sum P(x \mid x) P_{t}$
$\longrightarrow \frac{P_{\infty}(X)}{1}=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)$

$$
x=x_{i}
$$

Example: Stationary Distributions

- Question: what's $\mathrm{P}(\mathrm{X})$ at time $\dagger=$ infinity?

$$
\begin{aligned}
P_{\infty}(\text { sun }) & =P(\text { sun } \mid \text { sun }) P_{\infty}(\text { sun })+P(\text { sun } \mid \text { rain }) P_{\infty}(\text { rain }) \\
P_{\infty}(\text { rain }) & =P(\text { rain } \mid \text { sun }) P_{\infty}(\text { sun })+P(\text { rain } \mid \text { rain }) P_{\infty}(\text { rain })
\end{aligned}
$$

$$
\left\{\begin{aligned}
P_{\infty}(\text { sun }) & =0.9 P_{\infty}(\text { sun } \\
P_{\infty}(\text { rain }) & =0.1 P_{\infty}(\text { sun } \\
P_{\infty}(\text { sun }) & =3 P_{\infty}(\text { rain })
\end{aligned}\right.
$$

$$
P_{\infty}(\text { rain })=1 / 3 P_{\infty}(\text { sun })
$$

Also: $P_{\infty}($ sun $)+P_{\infty}($ rain $)=1$

$$
\begin{aligned}
P_{\infty}(\text { sun }) & =3 / 4 \\
P_{\infty}(\text { rain }) & =1 / 4
\end{aligned}
$$

\mathbf{X}_{t-1}	\mathbf{X}_{t}	$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

14

Application of Stationary Distribution: Web Link Analysis

- PageRank over a web graph
- Each web page is a state
- Initial distribution: uniform over pages
- Transitions:
- With prob. c, uniform jump to a random page (dotted lines, not all shown)
- With prob. 1-c, follow a random
 outlink (solid lines)
- Stationary distribution
- Will spend more time on highly reachable pages
- e.g. Many ways to get to the acrobat reader download page
- Somewhat robust to link spam
- Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time)

Application of Stationary Distributions: Gibbs Sampling

- Each joint instantiation over all hidden and query variables is a state: $\left\{X_{1}, \ldots, X_{n}\right\}=H \cup Q$
- Transitions:
- Resample variable x_{i} according to

$$
p\left(X_{i} \mid X_{1}, X_{2}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}, E_{1}, \ldots, E_{m}\right)
$$

- Stationary distribution:
- Conditional distribution $P\left(X_{1}, X_{2}, \ldots, X_{n} \mid E_{1}, \ldots, E_{m}\right)$
- Means that when running Gibbs sampling long enough we get a sample from the desired distribution

- Requires some proof to show this is true!

Hidden Markov Models

Hidden Markov Models

- Markov chains not so useful for most agents
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states X
- You observe outputs (effects) at each time step

Example: Weather HMM

$$
P\left(X_{t} \mid X_{t-1}\right)
$$

- An HMM is defined by:
- Initial distribution:
$P\left(X_{1}\right)$
- Transitions: $P\left(X_{t} \mid X_{t-1}\right)$
- Emissions: $P\left(E_{t} \mid X_{t}\right)$

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

- Joint Distribution of an HMM

- Joint distribution:
$P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(E_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) P\left(E_{3} \mid X_{3}\right)$
- More generally:
$\left.X_{T}, E_{T}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)$
- Questions to be resolved:
- Does this indeed define a joint distribution?
- Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and HMMs

- From the chain rule, every joint distribution over $X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}$ can be written as:

$$
\begin{aligned}
P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)= & P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}, E_{1}\right) P\left(E_{2} \mid X_{1}, E_{1}, X_{2}\right) \\
& P\left(X_{3} \mid X_{1}, E_{1}, X_{2}, E_{2}\right) P\left(E_{3} \mid X_{1}, E_{1}, X_{2}, E_{2}, X_{3}\right)
\end{aligned}
$$

- Assuming that
$X_{2} \Perp E_{1}\left|X_{1}, \quad E_{2} \Perp X_{1}, E_{1}\right| X_{2}, \quad X_{3} \Perp X_{1}, E_{1}, E_{2}\left|X_{2}, \quad E_{3} \Perp X_{1}, E_{1}, X_{2}, E_{2}\right| X_{3}$
Gives us the expression posited on the previous slide:
$P\left(X_{1}, E_{1}, X_{2}, E_{2}, X_{3}, E_{3}\right)=P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(E_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) P\left(E_{3} \mid X_{3}\right)$

Real HMM Examples

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options
- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B_{f}(x)$ $=P\left(X_{t} \mid E_{1}, \ldots, E_{t}\right)$ (the belief state) over time
- We start with $\mathrm{B}_{0}(\mathrm{x})$ in an initial setting, usually uniform
- As time passes, or we get observations, we update $B(x)$
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

Example: Robot Localization

Example from Michael Pfeiffer

Sensor model: can read in which directions there is a wall, never more than 1 mistake
Motion model: may not execute action with small prob.

Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely b/c required 1

Example: Robot Localization

Prob 0

1

Example: Robot Localization

Prob 0

1

Example: Robot Localization

Prob 0 1

Example: Robot Localization

Prob 0

1

Inference: Base Cases

$$
\begin{gathered}
P\left(X_{1} \mid e_{1}\right) \\
P\left(x_{1} \mid e_{1}\right)=P\left(x_{1}, e_{1}\right) / P\left(e_{1}\right) \\
\propto_{X_{1}} P\left(x_{1}, e_{1}\right) \\
\\
=P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right)
\end{gathered}
$$

$$
\begin{aligned}
& P\left(X_{2}\right) \\
& P\left(x_{2}\right)=\sum_{x_{1}} P\left(x_{1}, x_{2}\right) \\
&=\sum_{x_{1}} P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right)
\end{aligned}
$$

Passage of Time

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date)

$$
B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)
$$

- then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Basic idea: beliefs get "pushed" through the transitions
- Or compactly:

$$
B^{\prime}\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X^{\prime} \mid x_{t}\right) B\left(x_{t}\right)
$$

- With the " B " notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

- As time passes, uncertainty "accumulates"

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	4.00	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
$\mathrm{t}=1$					

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
t = 2					

(Transition model: ghosts usually go clockwise)

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

$B_{0} \rightarrow B_{1}^{\prime} \rightarrow B_{1}$ Observation

B_{2}

- Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ previous evidence):

$$
B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto X_{t+1} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \quad \text { " Basic idea: beliefs "reweigh likelihood of evidence }
\end{aligned}
$$

- Or, compactly:
- Unlike passage of time, we have to renormalize

$$
B\left(X_{t+1}\right) \propto_{X_{t+1}} P\left(e_{t+1} \mid X_{t+1}\right) B^{\prime}\left(X_{t+1}\right)
$$

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

Example: Weather HMM

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

The Forward Algorithm

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- We can derive the following updates

$$
\begin{aligned}
P\left(x_{t} \mid e_{1: t}\right) & \propto_{X} P\left(x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$

We can normalize as we go if we want to have $P(x \mid e)$ at each time step, or just once at the end.

Online Belief Updates

- Every time step, we start with current $P(X \mid$ evidence $)$

- We update for time: $P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)$
- We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

- The forward algorithm does both at once (and doesn't normalize)

Recap: Filtering

Elapse time: compute $P\left(X_{t} \mid e_{1: t-1}\right)$

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

Observe: compute $P\left(X_{\mathrm{t}} \mid \mathrm{e}_{1: \mathrm{t}}\right)$

$$
P\left(x_{t} \mid e_{1: t}\right) \propto P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

Belief: <P(rain), P(sun)>

$P\left(X_{1}\right)$	$<0.5,0.5>$	Prior on X_{1}
$P\left(X_{1} \mid E_{1}=\right.$ umbrella $)$	$<0.82,0.18>$	Observe
$P\left(X_{2} \mid E_{1}=\right.$ umbrella $)$	$<0.63,0.37>$	Elapse time

Particle Filtering

Particle Filtering

Filtering: approximate solution

- Sometimes $|X|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, $N \ll|X|$
- Storing map from X to counts would defeat the point

- $P(x)$ approximated by number of particles with value x
- So, many x may have $p(x)=0$!
- So, many x may have p(x) 0 .
- More particles, more accuracy
- For now, all particles have a weight of 1

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- This is like prior sampling - samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particles:

Particle Filtering: Observe

- Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$
\begin{aligned}
w(x) & =P(e \mid x) \\
B(X) & \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

- As before, the probabilities don't sum to one, since all have been down weighted (in fact they now sum to (N times) an approximation of $\mathrm{P}(\mathrm{e})$)

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution

Particles:
$(3,2) w=.9$
$(2,3) w=.2$
$(3,2) w=.9$
$(3,1) w=.4$
$(3,3) w=.4$
$(3,2) w=.9$
$(1,3) w=.1$
$(2,3) w=.2$
$(3,2) \quad w=.9$
$(2,2) w=.4$

45
$\mathbb{P}\left(X_{T} \mid e_{1} \ldots\right.$ Recap: Particle Filtering

- Particles: track samples of states rather than an explicit distribution

$$
B \rightarrow B^{\prime} \rightarrow B
$$

Trans. prob.

$$
\begin{aligned}
& \begin{array}{l|l|}
\hline 0 \mid 0.9 \\
\hline 1 \mid 0.1 \\
\mathbb{P}\left(x_{t} \mid x_{t-1}=1\right)
\end{array} \\
& \begin{array}{l}
\mathbb{P}(E=2 \mid x=0)=0.9 \\
\mathbb{P}(E=3 \mid x=0)=0.1
\end{array} \\
& \begin{array}{l}
0.0 .2 \\
\hline 10.8
\end{array}\left\{\begin{array}{l}
\mathbb{P}(E=2 \mid x=1)=0.3 \\
\mathbb{P}(E=3 \mid x=1)=0.7
\end{array}\right.
\end{aligned}
$$

Emission prob.
 3 sample $\rightarrow\left(\frac{0.9}{1.5}, \frac{0.3}{15}, \frac{0.3}{1.5}\right) \quad t=101 \quad 0 \quad 1$. from this distribution $\overrightarrow{1.5},{ }^{1.5}$

$$
\left\{\begin{array}{l}
\mathbb{P}\left(x_{s}^{=0} \mid \cdots\right) \approx \frac{(0,1,0)}{2 / 3} \\
\mathbb{P}\left(x_{5}=1 \mid \cdots\right)=1 / 3
\end{array}\right.
$$

Robot Localization

- In robot localization:
- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$
- Particle filtering is a main technique

49

Particle Filter Localization (Sonar)

Particle Filter Localization (Laser)

$\xrightarrow[\epsilon]{t}{ }^{t+1}$
 Robot Mapping

$(10 c x, \operatorname{loc}$, map $)$

- SLAM: simultaneous bocalization and mapping
- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

Particle Filter SLAM - Video 1

Particle Filter SLAM - Video 2

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Dynamic Bayes nets are a generalization of HMMs

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: generate prior samples for the $t=1$ Bayes net
- Example particle: $\mathbf{g}_{1}{ }^{\mathbf{a}}=(3,3) \mathbf{g}_{\mathbf{1}}{ }^{\mathbf{b}}=(5,3)$
- Elapse time: sample a successor for each particle
- Example successor: $\mathbf{g}_{\mathbf{2}}{ }^{\mathbf{a}}=(2,3) \mathbf{g}_{\mathbf{2}}{ }^{\mathbf{b}}=(6,3)$
- Observe: weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $p\left(e_{1}{ }^{a} \mid g_{1}{ }^{a}\right) * p\left(e_{1}{ }^{\mathrm{b}} \mid \mathrm{g}_{1}{ }^{\mathrm{b}}\right)$
- Resample: select prior samples (tuples of values) in proportion to their likelihood
$\frac{\mathbb{P}\left(x_{+} \mid e_{1-t}\right)}{\text { filtering Likely Explanation }}$
prob.

HAMs: MLE Queries

- HMM defined by
- States X
- Observations E
- Initial distribution: $P\left(X_{1}\right)$
- Transitions: $P\left(X \mid X_{-1}\right)$
- Emissions: $\quad P(E \mid X)$

- New query: most likely explanation: $\arg _{x_{1: t}} \max \left(x_{1: t} \mid e_{1: t}\right) \propto \vec{\pi}\left(x_{1 \ldots t}, e_{1 \ldots t}\right)$
- New method: the Viterbi algorithm

$$
\rightarrow \mathbb{P}\left(x_{1}\right) \mathbb{P}\left(c_{1} \mid x_{1}\right) .
$$

$$
P\left(x_{1 . \cdot t-1} \mid e_{1 \cdot t-1}\right)_{\vdots} P\left(x_{2} \mid x_{1}\right) \mathbb{P}\left(e_{2} \mid x_{2}\right)
$$

$$
0 \bigcirc \mathbb{P}\left(x_{t} \mid x_{t-1}\right) \mathbb{P}\left(e_{t} \mid x_{t}\right)
$$

- Each arc represents some transition $x_{t-1} \rightarrow x_{t}$
- Each arc has weight $P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Challenge

- Setting

$$
\max _{x_{1} \cdots x_{t}}^{\text {Challenge }} P\left(x_{1} \cdots x_{t} \mid E_{1} \ldots E_{t}\right)
$$

- User we want to spy on use HTTPS to browse the internet
- Measurements
- IP address
- Sizes of packets coming in
- Goal
- Infer browsing sequence of that user
- e.g.: Medical, financial, legal, ...
 time t

HMM

- Transition model
- Probability distribution over links on the current page + some probability to navigate to any other page on the site
- Noisy observation model due to traffic variations
- Caching
- Dynamically generated content
- User-specific content, including cookies
\rightarrow Probability distribution P (packet size \| page)

Results

BoG $=$ described approach, others are prior work

Results

Session Length Effect

